Agenda

* What is JSON?

* JSON Structure

e JSON Arrays and JSON Objects
e HTTP Calls in Android

* Main Thread vs Background
Thread

* Google's GSON

MVVM Design Pattern
Repository Pattern
ViewModels

Live Data

Observer Pattern
Coroutines

View Binding

Retrofit

What is JSON?

What is JSON?

e JSON stands for - JavaScript Object Notation
* Avery lightweight data-interchange format

* Language Independent {
* FEasy to understand "movies": [
{
"movie": "Avengers",
"year": 2012
}

]
h

JSON Structure

 JSON has two parts:

1. JSON Objects

* Contains Key — Value Pairs

2. JSON Arrays
e Contains JSON Objects

{}

[]

JSON Objects

* JSON Objects are represented by Curly brackets { }

e (Contains KEY-VALUE pairs { “name” : “Avengers” , “year” : 2012 }

* Key and Value is separated by colon

* Key-Value pairs are separated by comma

HTTP Calls in Android

HttpUrlConnection Class

HTTP Calls

* HttpUriConnection Class
* Send and receive data over the web
 Data may be of any type and length

* Can be used to send and receive streaming data whose length
is not known in advance

Problem

 Android doesn’t allow to make on Ul thread
(Main)
e Also, it doesn’t allow to if you are

on a background thread (Worker)

* Coroutines are the recommended solution for asynchronous
calls.

GSON

* Provide simple toJson() and fromlJson() methods to convert
Java objects to JSON and vice-versa

val movie = Gson().fromJson(jsonString, Movie::class.java)

MVVM

ViewModel 'l LiveData 3

Repository

y

Model Remote Data Source

Retrofit

ViewModel

The ViewModel class is designed to store and
manage Ul-related data in a lifecycle conscious
way.

The ViewModel class allows data to survive
configuration changes such as screen rotations.

Activity created

Activity rotated

finish()

Finished

onSstart

onResume

onPause
onstop
onDestroy
Scope
on5tart

onResume

onPause
onstop

onDestroy
onCleared()

Live Data

e isan observable data holder class

* s lifecycle-aware

* follows the observer pattern.

* notifies Observer objects when underlying data

Observer Pattern

* Think of Observer Pattern as an
* Subject notifies observers directly by calling one
of their methods

%

Observer Pattern

b3

FA
@
. ~
Auctioneer

observe observe

a

Bidders

Thank You....!!

