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What is JSON?



What is JSON?

e JSON stands for - JavaScript Object Notation
* Avery lightweight data-interchange format

* Language Independent {
* FEasy to understand "movies": [
{
"movie": "Avengers",
"year": 2012
}

]
h



JSON Structure

 JSON has two parts:

1. JSON Objects

* Contains Key — Value Pairs

2. JSON Arrays
e Contains JSON Objects

{}

[ ]




JSON Objects

* JSON Objects are represented by Curly brackets { }

e (Contains KEY-VALUE pairs { “name” : “Avengers” , “year” : 2012 }

* Key and Value is separated by colon

* Key-Value pairs are separated by comma




HTTP Calls in Android

HttpUrlConnection Class



HTTP Calls

* HttpUriConnection Class
* Send and receive data over the web
 Data may be of any type and length

* Can be used to send and receive streaming data whose length
is not known in advance



Problem

 Android doesn’t allow to make on Ul thread
(Main)
e Also, it doesn’t allow to if you are

on a background thread (Worker)

* Coroutines are the recommended solution for asynchronous
calls.



GSON

* Provide simple toJson() and fromlJson() methods to convert
Java objects to JSON and vice-versa

val movie = Gson().fromJson(jsonString, Movie::class.java)
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ViewModel

The ViewModel class is designed to store and
manage Ul-related data in a lifecycle conscious
way.

The ViewModel class allows data to survive
configuration changes such as screen rotations.
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Live Data

e isan observable data holder class

* s lifecycle-aware

* follows the observer pattern.

* notifies Observer objects when underlying data

Observer Pattern

* Think of Observer Pattern as an
* Subject notifies observers directly by calling one
of their methods
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Thank You....!!



